Directions: Choose the letter that corresponds to the correct answer.

1. Which of the following statements is/are TRUE for the reaction shown below if $\frac{\Delta F_2}{\Delta t} = -0.28 \, M/s?$

$$F_{2(g)} + CIO_{2(g)} \rightarrow FCIO_{2(g)}$$

- a. The rate of disappearance of F_2 is equal to the rate of formation of $FCIO_2$.
- b. The rate of disappearance of CIO₂ is equal to the rate of formation of FCIO₂.
- c. The rate of disappearance of F₂ is equal to the rate of disappearance of ClO₂.
- d. All of the above
- e. None of the above

For numbers 2-4, refer to the data shown below.

At a certain temperature, the following data were obtained for the reaction of nitric oxide with hydrogen gas.

$$\mathsf{NO}_{(g)} + \mathsf{H}_{2(g)} \longrightarrow \mathsf{N}_{2(g)} + 2\mathsf{H}_2\mathsf{O}_{(g)}$$

Experiment	[NO], M	[H ₂], M	Initial Rate, M/s
1	0.100	0.016	2.34 x 10 ⁻⁶
2	0.100	0.032	4.68 x 10 ⁻⁶
3	0.050	0.032	1.17 x 10 ⁻⁶

- 2. What is the overall reaction order?

 - b. 2
 - c. 3

d. 4

- 3. What will happen to the rate if the concentration of NO is doubled?
 - a. There will be a two-fold increase in the rate.
 - b. There will be a four-fold increase in the rate.
 - c. The reaction rate will be reduced to half of the original rate.
 - d. The reaction rate will be reduced to a quarter of the original rate.
- 4. What will happen to the rate if the concentration of H₂ is halved?
 - a. There will be a two-fold increase in the rate.
 - b. There will be a four-fold increase in the rate.
 - c. The reaction rate will be reduced to half of the original rate.
 - d. The reaction rate will be reduced to a quarter of the original rate.
- 5. Which of the following is/are TRUE for a zeroth-order reaction $A \rightarrow B$?
 - a. The rate law expression is written as rate = k[A]
 - b. The plot of t against [A]_t will give a graph with the highest r².
 - c. Changes in the concentration of A do not affect the reaction rate.
 - d. All of the above
 - e. None of the above

