Basic Integration

1) Answer: D

Explanation: To calculate $\int x^{5} d x$, we have to apply the power rule for integrals.

Basically, the power rule for integrals states that the derivative of a function x^{n}, where n is a constant, is $\frac{x^{n+1}}{n+1}+C$.
$\ln \int x^{5} d x$, we have $\mathrm{n}=5$.
$\frac{x^{n+1}}{n+1}+C$
$\frac{x^{(5)+1}}{(5)+1}+C \quad$ input $n=5$
$\frac{x^{6}}{6}+C$

The answer is $\frac{x^{6}}{6}+C$.
2) Answer: A

Explanation: Let us apply the power rule to calculate $\int u^{3 \pi} d u$. Since we are using u as variable in the problem, we have
$\frac{u^{n+1}}{n+1}+C$
We have $n=3 \pi$; substituting this value of n :

Basic Integration

```
\(\frac{u^{n+1}}{n+1}+C\)
\(\frac{u^{(3 \pi)+1}}{(3 \pi)+1}+C\)
input \(n=3 \pi\)
\(\frac{u^{3 \pi+1}}{3 \pi+1}+C\)
```


3) Answer: C

Explanation: To identify the value of $\int\left(3 x^{2}-1\right) d x$, we have to apply first the difference rule:
$\int\left(3 x^{2}-1\right) d x$
$\int 3 x^{2} d x-\int 1 d x \quad$ Difference rule
$3 * \int x^{2} d x-\int 1 d x \quad$ Multiplication of a constant rule
$3^{*}\left(\frac{x^{2+1}}{2+1}+C\right)-(x+C) \quad$ Power rule and integral of a constant rule
$3 * \frac{x^{3}}{3}-x+C \quad$ Simplifying
$x^{3}-x+C$

Basic Integration

4) Answer: B

Explanation: Let us follow the steps in identifying the definite integral of a function given an upper limit and a lower limit:

Step 1: Compute the indefinite integral of the given function.

$$
\begin{array}{ll}
\int_{1}^{2} 3 x d x \\
3 * \int_{1}^{2} x d x & \text { Multiplication of a constant rule } \\
3 * \frac{x^{1+1}}{1+1}+C & \text { Power rule for integrals } \\
3 * \frac{x^{2}}{2}+C & \\
\frac{3 x^{2}}{2}+C &
\end{array}
$$

Hence, the indefinite integral of the given function is $\frac{3 x^{2}}{2}+C$

Step 2: Evaluate the indefinite integral at the lower limit.
The lower limit in the given function is 1 . Hence, we evaluate $\frac{3 x^{2}}{2}+C$ at $\mathrm{x}=1$:
$\frac{3(1)^{2}}{2}+C=\frac{3}{2}+C$

Basic Integration

Step 3: Evaluate the indefinite integral at the upper limit b.
The upper limit in the given function is 2 . Hence, we evaluate $\frac{3 x^{2}}{2}+C$ at $x=2$:
$\frac{3(2)^{2}}{2}+C=\frac{3(4)}{2}+C=\frac{12}{2}+C=6+C$

Step 4: Subtract the computed value in step 2 from the computed value in step 3.
We obtained $6+C$ in step 3 while $\frac{3}{2}+C$ in step 2 . Subtracting them:
$(6+c)-\frac{3}{2}+C$
$\frac{12}{2}-\frac{3}{2} \quad$ Note that 6 can be written as $12 / 2$ so that we have a similar fraction with $3 / 2$.
$\frac{9}{2}$

Thus, the answer is $9 / 2$.

5) Answer: D

Explanation: A function can take an infinite number of integrals. For instance, the function $2 x$ can have an integral equal to $x^{2}, x^{2}+10, x^{2}+0.001$, and so on. For this reason, we use an arbitrary constant, "C," to capture the infinite possibilities of a constant for an integral of a function.

Basic Integration
Answer Key

